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Free convection of fluid in a vertical tube 
filled with porous material 

By R. A. WOODING 
Applied Mathematics Laboratory, D.S.I.R., Wellington, N.Z. 

(Received 18 September 1961 and in revised form 19 January 1962) 

The problem of an unstable fluid overturning in a vertical tube filled with porous 
material is treated by an approximation of boundary-layer type. It is shown 
that the fluid can experience a pseudo-inertial effect, in which variations in 
density across the tube exhibit properties analogous to variations of momentum 
in an inertial flow. The mean fluid density and mean-square vertical velocity 
over a horizontal cross-section of the tube are related by a pair of hyperbolic 
equations, for which there exist two systems of characteristics. It is shown 
that changes in the mean density of the fluid can be propagated as discontinuities. 
For discontinuities of finite amplitude, two jump conditions are derived, one of 
which is found to involve an undetermined parameter A. The theory is applied 
to the case of a vertical tube containing porous material saturated with water, 
which is attached a t  the top to a reservoir filled with an aqueous solution (an 
analogue of Taylor’s (1954) experiment). The motion of a finite discontinuity 
which arises at the initial unstable interface is calculated by two approximate 
methods. These results compare satisfactorily with the data from three experi- 
ments, using tubes of circular cross-section, provided that the value of h is about 
0.75. If the theoretical interpretation is correct, it appears that convective 
flow ceases when the vertical density gradient is slightly less than the neutral 
value. 

~~ ~ ~ 

1. Introduction 
In  experimental work on Rayleigh instability of a fluid in a vertical tube, 

Sir Geoffrey Taylor (1954) employed a capillary tube filled with water and 
closed at the bottom, and connected a t  the top to a reservoir containing an 
aqueous solution of greater density than that of water. Convection currents 
developed in the tube from disturbances to the unstable interface between 
the two fluids. If the denser fluid in the upper reservoir was marked with a suit- 
able dye, its motion could be seen to take the form of a long column which 
descendedin the tube and displaced the lower fluid. It appeared that there existed 
a finite discontinuity, or jump, in the average fluid properties at the leading edge 
of the column. When the density gradient no longer exceeded the critical value 
at any point, the convective flow ceased. The vertical density gradient of the 
fluid in the tube could then be measured. 

Some use has also been made of this experimental method for the determina- 
tion of the density gradient at  neutral stability of a fluid in a vertical tube filled 
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with porous material and in a vertical Hele-Shaw cell, where similar experi- 
mental phenomena have been observed (Wooding 1959, 1960). 

Now, the possibility exists that the convective motion could lead to a final 
equilibrium situation in which the vertical density gradient has a value less than 
the critical value; i.e. any one of the experiments mentioned above should be 
regarded as giving a lower bound for the true neutral gradient. A difference 
between the experimental result and the neutral value could arise from two 
causes. The first is molecular diffusion along the tube after convection has prac- 
tically ceased. This effect is small, leading to an error of the order of the tube 
diameter in the measurement of the total depth of descent of the overlying fluid 
into the lower, less dense, fluid. The second possible phenomenon, suggested 
privately by Mr C. H. Bosanquet, is that the denser fluid ‘overshoots’ during 
the period of convective flow. The existence of such a phenomenon might indi- 
cate that the fluid is more unstable for finite disturbances than for infinitesimal 
disturbances, and leads to the suggestion, put forward by Taylor and Bosanquet, 
that the effect might be eliminated by increasing the density of the fluid in the 
upper reservoir very gradually to the desired value. 

Some knowledge of the convective processes which take place before equili- 
brium is reached in the tube would be useful; and a simple approximate theory is 
described here for the case of free convection in a fluid of variable density in 
which molecular diffusion is important when the fluid is contained in a vertical 
tube filled with porous material and closed at  the bottom. In the development 
of the theory, the P6clet number of the flow is taken to be O(1) or less, and the 
flow is assumed to possess the following properties. I. The characteristic length 
scale of the motion along the tube is much greater then the length scale in any 
direction normal to the tube axis. 11. The motion has approached a ‘quasi- 
steady ’ state in which the mean vertical density gradient departs only slightly 
from the critical value. 111. The flow pattern resembles a column-like convection 
which is characteristic of a single disturbance mode, usually the lowest mode, in 
the theory of Rayleigh instability in a vertical tube. (When the mean vertical 
density gradient has the critical value, a flow of this type may be present with 
finite amplitude, and constitutes a simple similarity solution of the equations 
of motion.) IV. When the ‘overall’ vertical density gradient exceeds the critical 
value by a finite amount, one or more finite discontinuities in density and other 
mean fluid properties will appear. In  the neighbourhood of these discontinuities, 
the assumptions I, I1 and I11 break down. 

2. The approximate equations of motion 
Consider a homogeneous isotropic porous medium contained in a long vertical 

tube, and saturated with an incompressible fluid of variable density. Rectangular 
Cartesian co-ordinates OXi (i = 1,2 ,3)  are taken with O X ,  directed vertically 
upwards. Let be the flow velocity component in the direction X i ,  P be the 
pressure, t the time, p and p the viscosity and density of the fluid, K the effective 
diffusivity, k and E the permeability and porosity of the medium, and g the ac- 
celeration due to gravity. The quantities p, Ic and e will be assumed constant, and 
the convective motion will be assumed to be so slow that the diffusivity K is 
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isotropic and constant, i.e. due to molecular motion alone. Then it is convenient 
to introduce the following dimensionless variables, taking b as a typical hori- 
zontal dimension of the tube. 

( x ,  Y ,  2) = (X,/b, X J b ,  X,/b), 

(% v, w) = (Ulb/K, U,b/K, u;blK), P = hP/KP, 

7 = ~ t / ~ b ’ ,  

aP - + w  = 0,l 
aY 

where 

the integral being taken over the total area S of a horizontal cross-section of the 
tube at any given value of z. I n  terms of these variables, the equations of con- 
tinuity, motion (Darcy’s law) and mass transport are 

au av aw 
ax ay ax -+-+- = 0, 

I aP 
&+U = 0,  

At the impermeable walls of the tube, the relevant boundary conditions are 

as 
- =  0 and qn = 0, 
an (4) 

where a/& signifies the normal derivative and qn the component of the flow velo- 
city normal to the wall. Since it is assumed that the vertical tube is closed at  the 

( 5 )  
bottom, the continuity restriction 

W = O  
must hold a t  all values of z. 

When the dimensionless pressure p is eliminated between the first two equa- 
tions in (2), a relationship between the velocity components u and v is obtained 

i.e. under the action of gravitational forces alone, the z-component of ‘vorticity ’ 
is zero. 

Approximations of boundary-layer type 
To render this system amenable to an approximate treatment, it will now be 
assumed that the PBclet number of the vertical flow (based upon the horizontal 
length scale b)  is of order unity, and the assumptions I, I1 and I11 of 5 1 will be 
applied. A flow region which is free of discontinuities is considered. 
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in the form of the double series 
For three-dimensional flows, the solution for w (for example) can be written 

where $ij is an eigenfunction satisfying the equation 

with the boundary condition a&/ax = 0 at the walls of the tube. In  (8) ,  the 
square of the wave-number afi is equal to the critical value of the dimensionless 
density gradient, or Rayleigh number ar//az, a t  which a small disturbance of 
form $ij is neutrally stable according to linear theory. 

Let the dimensionless quantity s denote the ratio of the characteristic hori- 
zontal dimension b of the tube to the length scale of the motion in the direction 
02. From assumption I, it follows that s < 1. Now, by assumption 111, one term 
of the double series in (7) is predominant; without significant loss of generality, 
this may be taken to be that term (or combination of terms) for which aij has its 
minimum value, CL say, a quantity which is not less than O( 1) in magnitude. For 
simplicity, suppose that only one term is involved. Then the orders of magni- 
tude of the terms in equations (l), ( 2 )  and (3) may be discussed with respect 
to the magnitude of this predominant term of (7) .  The process is justifiable 
a posteriori. 

With w = O(l) ,  z = O(s-l) and x and y = O(a-l), the three terms in the equa- 
tion of continuity (1) are of comparable magnitude, U(s) ,  if a and 21 are O(s/a). 
Then ap/ax and apjay are O(s/a) from the first two equations in ( 2 ) .  That is, ap1a.z 
is constant to within 0(s2/a2) over any horizontal cross-section of the tube. From 
the third equation in ( 2 )  and the condition (5 ) ,  

+r/ = O(s"a2), aZ 
and w + 9  = O(s2/a2).  (9) 

I n  equation (3), the ratio of a29/az2 to (a2/ax2+ a2/ay2) 9 is O(s2/a2). Eliminating 
9 from (3) by means of (9) and dropping terms of O(s2/a2) gives the equation 

6 )  (ii) (iii) (iv) (v) 

where, for convenience, the terms are allocated to groups numbered from (i) to 
(v). If magnitudes are assigned to the various quantities as before, each of the 
quadratic terms in (ii) is readily shown to be O(s). By the 'quasi-steady ' assump- 
tion 11, large rates of change are excluded; consequently, it is assumed that the 
terms (i) and (iv) are of the same order of magnitude as (ii). Also, by I1 and 111, 
the group of terms in (iii) is taken to be O(s) overall, i.e. for the predominant mode 
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the tendency of the fluid to overturn is almost balanced by the damping due to 
transverse diffusion. If use is made of (S), this gives 

and it follows that 

That is, the effect of longitudinal diffusion is small and the term (v) in equation 
(10) can be neglected. 

Finally, it is necessary to examine the interaction of higher-order modes upon 
the assumed predominant mode. For simplicity, let only two terms in ( 7 )  be 
considered-the predominant mode of O(1) and one higher mode of amplitude 
wij. Then the largest possible contribution due to this higher mode, to the quad- 
ratic terms (ii) in equation (lo), is 0(swiiaij/a). However, the contribution due 
to the diffusion terms in (iii) for the higher mode is O(a& wij) and is negative, SO 

that this mode tends to be heavily damped. In  fact, wij = O(s/aaii). The contribu- 
tion to the quadratic terms is therefore O(s2/a2) and may be neglected. Thus the 
assumption I11 is justified, and the flow system closely resembles the predomi- 
nant mode. This leads to the new equation 

a 2  22 

for the vertical velocitv w. 
The equations (l) ,  (6, (10)  and (1 1)  govern the behaviour of the four unknowns 

u, v, w and y. Prom (4) and (9), the appropriate boundary conditions are 

at the walls of the tube. 
Although the above analysis follows the Prandtl method of boundary-layer 

approximation, a slight difference in the properties of the system will have been 
observed. In  the conventional boundary-layer case, the system of equations 
remains determinate by virtue of the condition appn = 0, the pressure p being 
specified by its known value a t  the outer edge of the layer. In  the present case, 
the distribution ofp is a function of y, one of the unknowns, and it has been neces- 
sary to assume a particular form for the flow distribution (cf. equation (11)) in 
order to render the system determinate. 

From the left-hand side of equation (lo), one observes that the fluid can experi- 
ence a ‘pseudo-inertial’ effect, with variations in density across the tube ex- 
hibiting properties analogous to variations of momentum in an inertial flow. 
If W (in dimensional units) is a typical velocity, the PBclet number w = Wb/K 
is analogous to the Reynolds number of the corresponding momentum flow. 

Integrated form of the approximate equations 
Two integra.1 relationships can be derived from equation (10). If (10) is inte- 
grated with respect to x and y over the tube cross-section, using (l), (5) and the 
boundary conditions (12), one obtains, after application of Green’s theorem, 

a -  _ -  a? - -(w”>. ar ax (13) 
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Similarly, if (10) is first multiplied by w and then integrated with respect to x 
and y, there results 

From ( l l ) ,  the first two terms on the right-hand side of this equation can be 
replaced by -azS. Also, it is convenient to introduce the further assumption 
that the tube cross-section is of a simple symmetrical form ; in that case the fluid 
motion is almost purely antisymmetric if the most unstable mode predominates, 
and the term involving 2 in (14) vanishes. Equation (14) becomes 

--(w l a  7 ) --(;a - w2 ---a2 ) . 
z ar 

Equations (13) and (15) form a hyperbolic system, and can be written in the 
integrated characteristic form 

dz /dr  = 5 (223*, 7 - azz T ( 2 3 1 4  = constant. (16) 

In  (16), it  is convenient to adopt the convention that the square root is positive, 
and to take either the two upper signs together, or the two lower signs together, 
in defining each of the two sets of characteristics. 

Properties of the approximate equations 
The equations (13) and (15), or equations (16), possess the following similarity 
property. Suppose that A7 is the measure of a typical density difference. Then, 
if the amplitudes of the quantities, 7, (w2)* and z are scaled in proportion to Ar, it 
is found that the scaled equations remain invariant. 

In  equations (16), let 
7 --a%+ (2w”)* = r,  

- 
and 7-a22-(2w2)4 = -8, 

so that (2;2)* = +(r + s) and 7 - a2.z = +(r - s). The quantities r and s are Riemann 
invariants (Courant & Friedrichs 1948, 9 37). Then 

- = +(r+s)%,  
aZ 
ar 

aZ 
i 

ar i = - t ( r + s ) -  as 

and x can be eliminated between these last two equations to give 

If (18) is solved for r ( r ,  s), the solution for z(r,  s) follows from (17). Equation (18) 
is identical with the Riemann equation for 7(r,  s) in the case of one-dimensional 
isentropic flow of a gas with adiabatic constant y = 2 .  Although the same equiva- 
lence does not hold for the z-equation (since the slope of each of the two charac- 
teristics through a point differs, in the present problem, from the slope in the 
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gas flow case by a quantity r - s), the qualitative properties of the two flows can 
be expected to be very similar. 

This may be compared with the case of propagation of shallow-water waves 
(Stoker 1948) where the governing equations are completely equivalent to the 
equations of the same one-dimensional isentropic gas flow. 

3. Propagation of density discontinuities 
In  5 1, it was noted that discontinuities in the mean properties (density and 

velocity) of the convecting fluid had been observed experimentally. The possi- 
bility of such discontinuities appearing can be demonstrated from the close 
resemblance of the approximate equations of the flow to the gas flow equations. 
For example, using a method of Courant & Friedrichs (1948), it  can be shown 
that a wave transporting an increase in mean velocity will tend to steepen a t  the 
front in the manner of a compression wave in a gas, while the opposite type of 
wave will tend to flatten out, as in a rarefaction wave. Thus a theory analogous 
to the theory of one-dimensional isentropic gas flow can be derived, in which 
discontinuities analogous to shock waves are permitted. 

2 =o 

FIGURE 1. ( a )  Descending discontinuity in a vertical tube filled with porous material. ( b )  
Stationary discontinuity a t  the top of the porous medium in a vertical tube, with over- 
lying fluid of constant density. 

Jump conditions 
The motion of a discontinuity of finite amplitude will now be considered. This 
discontinuity must be of finite thickness, as in the case of a bore in shallow water 
(Stoker 1948) or a kinematic shock (Lighthill & Whitham 1955), since a transition 
region exists in which the approximate theory breaks down. In  the present treat- 
ment, the thickness of this transition region will be neglected. 

Suppose that a discontinuity in fluid properties is located a t  z = <(T) (in 
figure l(a)) and that the mean density and the flow velocity are denoted by ql 
and w1 above the jump and by qz and w2 below the jump. It is convenient to 
refer the system to a coordinate frame (z’, 7) moving with the jump, i.e. 
z = <(T) + z’. Then, relative to this frame, the flow process in the neighbourhood 
of the jump can be considered steady, giving 
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so that the continuity law (13) becomes 
- 

.a7 aw2 -5- = -, 
aZt aZI 

When this equation has been integrated across the jump from side 1 to side 2, 
there results 

Equation (15) can be treated similarly; thus 

A unique jump condition is, however, not obtained; for if this expression is 
multiplied by (G2)k-1 and integrated across the jump, the relation 

is found for arbitrary positive k. 

which corresponds to the characteristic velocity. 
When the discontinuity becomes very weak, 2 --f 3 and (20) gives j-2 = 2 q ,  

For the motion of a jump descending into still fluid, let G; -+ 0. Then 

g 2  = hi& (21) 

where the parameter h = 2k / (k+  1). (Thus 0 < h < 2.) A comparison of (19) 
and (21) for this case shows that 

- 
w; = 471-7A2* (22 )  

From the relations (19) to (22), it is evident that the velocities associated 
with the jump are scaled in proportion to ql - y2, in accordance with the similarity 
law obeyed by equations (13) and (15). (A similar variation of the length scale 
of the motion near the discontinuity has been observed experimentally.) 

It is also important to consider the boundary conditions which apply at the 
top of a porous medium in a long tube (at z = 0 in figure l(b)). The overlying 
fluid is assumed to be of constant density 7*, while the condition of uniform 
pressure gives = 0 at  z = 0. However, since the convective motion in the 
tube involves ascending fluid of density less than r*, it follows that the mean 
density yo, evaluated just below z -5 0, is less than 7". Hence some kind of jump, 
stationary in position but perhaps not stationary in length scale, must be as- 
sumed to exist at z = 0. 

If a ' quasi-steady ' condition is assumed to hold in the neighbourhood of z = 0, 
the density difference 7" - ro can be taken constant over a short period of time. 
Equation (13) gives = 0 at small negative z (putting a/& = 0) while (15) 
leads back to the condition that the density gradient is very nearly critical. 
Then, if the similarity property is assumed to hold, 
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where wo is the velocity at z = 0 and A' is a constant. This expression is of the same 
form as (22). 

The appearance of undetermined quantities A (or k) and A' in the above formulae 
introduces a difficulty which has not been overcome, since the detailed structure 
of the transition regions is unknown. It is also probable that the numerical values 
of these quantities are not the same for tubes of different cross-sectional shapes. 
In  the remainder of this paper, it  will be assumed that 

A' = A, (24) 

and the value of h will be adjusted to give optimum agreement with experimental 
data. The assumption (24) is at  least partially justified by the success of this 
approach. 

4. Discontinuity descending into still fluid 
Suppose that a vertical tube is filled, in the region for which z < 0, with a 

porous medium saturated with a static liquid of dimensionless density 7 = Pz + 7c, 
where yc is a constant density and where P < a2 for stability, while the region for 
which z > 0 contains overlying fluid of constant density 7" > vc. Then the motion 
of a descending discontinuity which leaves the origin z = 0 at time 7 = 0 is 
described by the characteristic equations (16), the jump conditions (19) and (21), 
and the 'boundary jump condition' (23) with A' = A. The following scaled 
variables are now introduced. 

Here 8, indicates the space co-ordinate of the jump. It is also convenient to 
designate the time T as TI at the jump; then, in the (2, T)-plane a given charac- 
teristic will intersect the jump a t  the point (Zl, T,) and the line Z = 0 at time To. 

The equations (16) become 

dZjdT = - W ,  R - Z +  W = Ro+Wo, (26) 

dZjdT = -I- W, R - Z -  W = Ro-Wo, (27) 

upon descending and ascending characteristics respectively, where Ro and Wo 
are the values of R and W in the porous medium just below 2 = 0. The jump 
conditions (19) and (21) give 

since R, = W, = 0 ahead of the jump, while the boundary jump condition (23) 
at 2 = 0 becomes 

Hi = (2A)ql -RJ.  (29) 
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When Tl = 0, the quantities Rl and Wl behind the jump are identical with Ro 
and Wo at 2 = 0; combining (28) with (29) shows that the initial values at  

Two methods of obtaining approximate solutions of the system of equations 
(26) to (30) will now be considered. 

Perturbation method 

Suppose that 6 = 1 - (2h)-3 and consider the formal perturbation scheme 

2 = 2(0)+62(1)+ ..., (31) 

with similar expansions for R and W ,  which is valid for 6 -+ 0. If Ro is eliminated 
using (29), the equations for the zero-order coefficients are 

(32) 

(33) 

dZ\o)/dTl = - +R$O), = W(0). 1 ,  (34) 

a t  To = Tl = 0, RF) = K(0) = %(”) = &, dZf)/dT, = -a. (35) 

dZ(O)/dT = - WC”, R(O) - Z(0) + WCO) = 1, 

dZ(O)/dT = W(O), R(O) - Z(0) - W(0) = 1 - 2WJO); 

For the first-order coefficients, the equations 

R(1) - z(1) + WCU = WJO) 

dZp/dT, = - gW;cu - *p, Ri1) = wp - Wp, 1 (36) 
el1) = 0 a t  Tl = 0, 

are required in order to determine the behaviour of the function Zil)(Tl). 
I n  the region behind the discontinuity, a comparison of the second equations 

in (32) and (33) reveals that W(O) = WJO) upon an ascending characteristic, i.e. 
in the zero-order approximation the jump is followed by a simple-wave region in 
which the ascending characterisics are straight lines. This becomes the exact 
solution in the case h = Q (6 = 0). Conversely, it is easily shown that the exact 
solution cannot be of simple-wave type when h + i. 

When (32) and (34) are applied to the flow quantities just behind the jump, 

(37) 
there results 

so that the strength of the discontinuity decreases, approximately linearly with 
depth to zero at 2io) = - 1. From (34) and (37), a first-order differential equation 
is obtained for Zio)’; the solution is 

(35) 

2Rio’ = 1 + Z(,O’, 

29) = e-tr,  - 1. 

It may be noted also that, when the discontinuity is advancing into neutrally 
stable fluid (/3 --f a2), the rate of descent tends to a constant with Zio) -+ - &Tl. 

Each ascending characteristic obeys a straight-line equation of the form 

Z(0) - Zip) = WJO) (‘f - Tl). 
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If the above equations and results are used to eliminate the quantities Zio), %(O) 

and T,, the relationship between W@), Z(0) and T in the region Zio) < Z(0) < 0 is 
found to be z(')+l = W(0)(T+2+41~g2W(0)). (39) 

For the descending characteristics, (39) and the first equation in (32) are 
combined. This leads to the parametric equations 

(40) 
T = (&(O)'-* - 4&(o)4) W(O)-!i + 2 - 4 log 2 w(o), 

Z(0) + 1 = ( J p - 4  - 4 & ( 9  W(O)t + 4 W(0) 

for T and Z(0) in terms of W(O), where Wio) is evaluated a t  the point of intersection 
of the given characteristic with the line Z(O) = 0. 

Z 

0 

-05 

- 1.0 

FIGURE 2. Zero- and first-order perturbation coefficients 2: 'and 2i1) for a 
discontinuity descending into still fluid. 

Figure 2 illustrates graphically the zero-order solution. An interesting feature 
is that there exists a 'limiting ' descending characteristic which intersects the 
discontinuity only when TI -+ CQ, and which intersects Z(0) = 0 when 

T, = 2+4l0g2. 

Subsequent descending characteristics do not intersect the jump and presumably 
do not influence its motion. 

When (37) is combined with the second equations in (32) and (40), there results 

~ w ( o ) *  1 = 4~Jo)t  - wJo)-t (41) 

upon a descending characteristic. Then, a differential equation for the first-order 
coefficient Zil) in terms of WJo) can be obtained by eliminating RIl), %(l), &(O) and 
Tl from (41), (36) and the relation 

(42) TI = - 4 log 2%(O'. 

The solution which satisfies the initial condition Zil) = 0 is 
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(42) and (43) are parametric relations for Tl and 2i1) in terms of W(O). The function 
ZP)(T,) is plotted in figure 2 .  When h > &(a > 0) ,  it  is found that the rate of 
descent dZ,/dT, must become zero at a finite value of T,; the value of 2, at that 
point will be taken as the final depth of descent, and the apparent ‘retreat ’ of 
the jump at later times will be ignored. 

Method of Whitham and Ros‘ciszewski 
Now consider the original equations (26) to (30), and suppose that the ascending 
characteristics may be replaced by straight lines. This is the method used by 
Roiciszewski (1960) in extending Whitham’s characteristic rule (Whitham 
1958). In  (27) and (28), let W = W, = FfL; it  follows that 

2R1 = 1+2,, (45) 

which corresponds to (37) in the perturbation scheme. The corresponding 
approximate solution for the jump motion (cf. (38)) is 

2, = e-hhTi - 1. (46) 

FIGURE 3. Minimum values of 2, + 1 (i.e. maximum depth reached by the discontinuity) as 
a function of the parameter A : ----- , perturbation method; - , method of Whitham 
and Rogciszewski. Values measured in three experiments me plotted as numbered points. 

The analysis is performed along the same lines as in the case of the zero-order 
perturbation coefficient, and expressions analogous to (39), (40) and (41) are 
obtained. A new estimate for the jump motion is found by combining the analogue 
of (41) (which relates Wo and W, upon a descending characteristic) with (26), (28) 
and (29), and eliminating R,, R, and W,. Parametric relat’ions are found for 2, 
and T, in terms of 8. If (2h)i = p ,  
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This approximate solution also has the property that the maximum depth of 
descent occurs at a finite value of TI when h > 4. 

The estimates for the limiting values of 2, from the two methods are plotted 
in figure 3. Both estimates touch the straight line 

(49) z - -1-B(h-L 
1 -  2 ) '  

Since the ultimate value of 2, is greater than unity when h > g, it is clear that a 
certain amount of 'overshooting' must occur for that case. If 0 < h < 4, the 
discontinuity would appear to 'undershoot'. However, the final state of the 
fluid would then involve a density gradient in excess of the critical value, for 
which the system would be unstable. 

5. Experimental results 
The motion of a discontinuity descending into still fluid of constant density 

is most readily studied by means of Taylor's experiment, using a vertical tube of 
circular cross-section filled with porous material. A description of the experi- 
mental procedure has been given by Wooding (1959). 

Expt. no. ... 1 2 3 
Sodium Sodium 

Potassium sulphate, sulphate, 
Solute pemanganate Meth. blue Meth. blue 

Mean temp. ("C) 
Tube rad. b (cm) 
Porosity, 6 
Permeability, 107k (cmz) 
Viscosity, lo2 ,u (poise) 
Density diff. 

AF (g/cm3) 
A (cm) 
x, (em) 

lo4 B (sec-I) 
t,/3600 (sec) 
h 
( - a t l I n .  

22.5 
0.35 
0.36 
3.2 
1.00 

0.040 
15.3 
- 0.58 
- 0.857 
- 0.1 

- 1.083 
0.75 

14.0 
0.504 
0.36 
3.0 
1.20 

0.0192 
15.5 
- 0.59 
- 0.316 
- 0.30 

0.75 
- 1.090 

21.0 
0.504 
0-36 
3.47 
1.02 

0.0222 
25.7 
- 0-69 
- 0.297 

1.0 
0.74 

- 1.093 

TABLE 1. Values of physical parameters obtained from three experiments on 
free convection in tubes filled with saturated porous material. 

Three sets of experimental data have been obtained from experiments of this 
type, and are summarized in tables 1 and 2. Table 1 gives the measured values 
of certain relevant physical parameters for each experiment. In  each case, the 
temperature did not vary more than about & 2' C from the recorded mean value. 
The mean tube radius, b, was found by measuring the volume of water required 
to fill a given length of tube, while the porosity E was obtained by the same tech- 
nique when the tube contained Ballotini glass beads of about 0.2 mm diameter. 
The mean viscosity p was measured from Poiseuille-type experiments, conducted 
at the same temperature in each case as the corresponding experiment with 
porous material. A density-bottle method was used to determine the initial 
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difference in density, Aj3, between the aqueous solution in the upper reservoir 
and the water saturating the porous medium in the vertical tube. 

Table 2 gives the distance, - X,, of the leading edge of the discontinuity from 
the upper surface of the porous medium as a function of the time t since the start 
of each experiment. 

Expt. 1 Expt. 2 Expt. 3 
7 - 7  I > r  -7 
Elapsed Depth, Elapsed Depth Elapsed Depth, 
time (h) - X ,  (cm) time (h) -x, (em) time (h) - x, (em) 

0 0 0 0 0 0 
0.83 2.95 1.03 2.0 2.94 3.1 
0.92 3.3 2.7 4.2 3.5 4.5 
1.0 3.65 4.0 5.8 4.0 5.65 
1.17 4.3 5.55 7.3 4.55 7.1 
1-33 4.95 7.0 8.5 5.05 8.25 
1-5 5-5 8.5 9.5 5.5 9.3 
1.7 6.1 10.0 10.5 6.0 10.3 
2-42 8.0 11.45 11.25 7.25 12.5 
3.0 9.2 13.0 11.9 7.5 12.8 
3.75 10.4 14.5 12.5 8.0 13.55 
4.25 11.1 16.0 12.95 8.5 14.25 
5.08 12.1 18.0 13.5 10.0 16.0 
5.42 12.35 20.1 14.0 12.5 18.35 
5.58 12.55 21.7 14.3 15.0 20.0 
6.4 13.15 22.5 14.45 18.0 21.5 
7.0 13-55 23-2 14.55 20.4 22.5 
7.67 13.9 24.0 14.7 22.0 23.1 
9.58 14.7 25.0 14.85 27.6 24.65 

11.0 15.15 26.32 15.0 31.6 25.35 
13.0 15.5 27.47 15.15 32.5 25.45 
15.0 15.75 28.22 15.25 37.5 26.0 
18.0 15.9 29.9 15.4 42.5 26.4 
21.67 16.0 32.05 1 5 6  47.5 26-75 

33.65 15.8 52.5 27.0 
36.0 15.9 56.8 27.1 
44.5 16.2 62.5 27.25 
46.5 16.3 67.5 27.3 

73.7 27.4 

TABLE 2. Time-depth measurements from three experiments on convection in 

h 

vertical tubes filled with saturated porous material 

To match the approximate solutions of $4 to these results the relationships 

are assumed, where A ,  B, X ,  and to are additional parameters. From the defini- 
tions of Z,, !PI (with /3 = 0) and the critical Rayleigh number 

a2 = 3.39 = ygkb2/Kp, 

it  is found that A = A m ,  
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where y denotes the density gradient of the fluid at  neutral stability. When X ,  
is non-zero, the origin 2, = 0 corresponds to a ‘virtual origin’ which is slightly 
displaced from the top of the porous medium. The existence of this parameter is 
not surprising since the theoretical treatment of the end conditions is very 
approximate. The value of to is adjusted to compensate for variations in the rate 
of development of the initial finite disturbance. 

\>,, R=-050 

R =075 
FIGURE 4. Experimental values of 2, + 1 compared with approximate theoretical values as 
functions of AT, for h =0,5 and 0.75: -----, perturbation method; - , method of 
Whitham and RoPciszewski; 0, Expt. 1; +, Expt. 2; 0, Expt. 3. 

Approximate values for the above parameters have been determined graphic- 
ally, using the simple expression (46) to equate the velocities in the early stages of 
the motion, and are listed in table 1 for each of the three experiments. The value 
of h is calculated from (51) for each case. 

The relations (50), with the values of the parameters given in table 1, have been 
used to convert the experimental points to the co-ordinate system (2, + 1, AT,). 
These points are plotted in figure 4. Curves derived from the approximate theor- 
etical results of $ 4  for the jump motion are drawn for the cases h = 0.5 and 0.75; 
the latter is in good agreement with the experimental data. 

Values of the maximum depth of descent measured experimentally are 



144 R. A .  Wooding 

given in table 1 in dimensionless form ((Zl)min.), and are plotted with abscissa 
h = 0.75 in figure 3. The observed values exceed the predicted theoretical value 
by 2 or 3%. 

6.  Conclusions 
The simple theory described in this paper has been found to give results which 

are in sa,tisfactory agreement with experiment. However, since no fewer than 
five experimental parameters were determined from the experimental data, 
some shortcomings of the theory may have been concealed. These expected 
difficulties are (i) the fact that the P6clet number exceeded O( 1) during the early 
stages of the motion in the experiments, (ii) the neglect of changes in viscosity 
and diffusivity with changes in solute concentration, (iii) the neglect of longi- 
tudinal diffusion, which may have become significant at  low convection velocities, 
and (iv) shortcomings in the approximate methods of calculating the jump 
motion. 

In  any case, i t  appears that the descending fluid can ‘overshoot ’ the point of 
neutral stability by something less than 10 yo. This factor should therefore be 
considered if convection methods are employed to obtain physical measurements 
in stability problems. 
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